If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q=q^2
We move all terms to the left:
8q-(q^2)=0
determiningTheFunctionDomain -q^2+8q=0
We add all the numbers together, and all the variables
-1q^2+8q=0
a = -1; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·(-1)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*-1}=\frac{-16}{-2} =+8 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*-1}=\frac{0}{-2} =0 $
| -49-x=-8+70 | | 5x-2(3-4x)=9x+14 | | 126=9v+9 | | 3x-14=-3x-10 | | 140+40x=970 | | 7p+3=6p+8 | | 12–5a=-13 | | x/16=0.3 | | 25=-8p+9 | | 9/10x-1/3=5 | | 3x+9x+5x=81 | | r+8r=63 | | 3x+15=-2x-10 | | 4(2x+6)=-23+31 | | 4=7+3a-22a+5 | | 4+24=-2(7x-5)+6x | | -18=z–20 | | 4=7+3a-22a+ | | 340=20k | | 9b/16=38 | | 0=s/2 | | p-5/4=7 | | z/2+9=12 | | 34=-7x-1 | | 4(x-12)=-48+4x | | -20=-7-4x+2+53x-1 | | x2+3x+2=(x+2)x | | 2v–18=6 | | 180=(10y+6)(8y-6) | | -90=6n | | s+20=23 | | 15x+30(x-4)=195 |